TREK

Two-subspace Randomized Extended Kaczmarz Method for Linear Least-squares Problems

Wen-Ting Wu

School of Mathematics and Statistics Beijing Institute of Technology

Email: wuwenting@bit.edu.cn

GGMW2022 April 15-19, 2022

Outline

Randomized Kaczmarz

2 Two-subspace Randomized Extended Kaczmarz

3 Numerical Results

Conclusions and Remarks

Outline

Randomized Kaczmarz

2 Two-subspace Randomized Extended Kaczmarz

3 Numerical Results

Conclusions and Remarks

For the large-scale system of linear equations

$$Ax = b$$
, with $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^m$,

consider its least-norm least-squares solution $x_{\star} = A^{\dagger}b$.

$$Ax = b \implies \begin{bmatrix} A^{(1)} \\ A^{(2)} \\ \vdots \\ A^{(m)} \end{bmatrix} x = \begin{bmatrix} b^{(1)} \\ b^{(2)} \\ \vdots \\ b^{(m)} \end{bmatrix}$$

where

• $A^{(i)}(i = 1, 2, ..., m)$: the *i*-th row of the matrix A, • $b^{(i)}(i = 1, 2, ..., m)$: the *i*-th entry of the vector b. At the *k*-th iterate,

$$x_k \longrightarrow x_{k+1} \in \{x \,|\, A^{(i_k)}x = b^{(i_k)}\}$$

that is

$$x_{k+1} = x_k + \frac{\left(b^{(i_k)} - A^{(i_k)}x_k\right)}{\|A^{(i_k)}\|_2^2} \left(A^{(i_k)}\right)^*, \quad i_k \in \{1, 2, \dots, m\}$$

- Kaczmarz Method ^[1]: Select i_k according to $i_k = (k \mod m) + 1$
- Randomized Kaczmarz Method ^[2]: Select i_k with the probability $\Pr(\text{row} = i_k) = \frac{\|A^{(i_k)}\|_2^2}{\|A\|_{\infty}^2}$
- [1] Kaczmarz, Bull. Int. Acad. Polon. Sci. Lett. A(1937).
- [2] Strohmer and Vershynin, J. Fourier Anal. Appl.(2009).

Convergence Theorem ^[3]

Let the linear system Ax = b be consistent. Then, starting from an initial guess $x_0 \in \mathbb{C}^n$ in the column space of A^* , the iteration sequence $\{x_k\}_{k=0}^{\infty}$ generated by the RK method obeys

$$\mathbb{E} \|x_k - x_\star\|_2^2 \le \left(1 - \frac{\lambda_{\min}(A^*A)}{\|A\|_F^2}\right)^k \|x_0 - x_\star\|_2^2,$$

where $\lambda_{\min}(A^*A)$ represents the smallest nonzero eigenvalue of A^*A .

[3] Gower and Richtárik, arXiv:1512.06890(2015).

. .

Further works

Applied to different methods

• D. Leventhal and A.S. Lewis, Randomized methods for linear constraints: convergence rates and conditioning, Math. Oper. Res., 35(2010), 641-654.

Extended to different problems

- A. Zouzias and N.M. Freris, Randomized extended Kaczmarz for solving least squares, SIAM J. Matrix Anal. Appl., 34(2013), 773-793.
- A. Hefny, D. Needell and A. Ramdas, Rows versus columns: Randomized Kaczmarz or Gauss-Seidel for ridge regression, SIAM J. Sci. Comput., 39(2017), S528-S542.

Accelerated with greedy strategy

- Z.-Z. Bai and W.-T. Wu, On greedy randomized Kaczmarz method for solving large sparse linear systems, SIAM J. Sci. Comput., 40(2018), A592-A606.
- Z.-Z. Bai and W.-T. Wu, On greedy randomized augmented Kaczmarz method for solving large sparse inconsistent linear systems, SIAM J. Sci. Comput., 43(2021), A3892-A3911.

Block Kaczmarz methods

$$Ax = b \implies \begin{bmatrix} A_{\tau_1} \\ A_{\tau_2} \\ \vdots \\ A_{\tau_p} \end{bmatrix} x = \begin{bmatrix} b_{\tau_1} \\ b_{\tau_2} \\ \vdots \\ b_{\tau_p} \end{bmatrix}$$

where

- $\tau_i (i = 1, 2, \dots, p)$: a subset of $\{1, 2, \dots, m\}$,
- $A_{\tau_i}(i=1,2,\ldots,p)$: the row submatrix of A indexed by τ_i ,
- $b_{\tau_i}(i=1,2,\ldots,p)$: the subvector of b with components listed in τ_i .

Block Kaczmarz methods (cont'd)

At the k-th iterate, randomly choose a block $A_{\tau_{i_k}}$ to update x_k .

- Randomized Block Kaczmarz Method ^[4]: $x_k \longrightarrow x_{k+1} \in \{x \mid A_{\tau_{i_k}}x = b_{\tau_{i_k}}\},$ that is $x_{k+1} = x_k + (A_{\tau_{i_k}})^{\dagger}(b_{\tau_{i_k}} - A_{\tau_{i_k}}x_k)$
- Randomized Average Block Kaczmarz Method^[5]:

$$x_{k+1} = x_k + \alpha_k \left(\sum_{i \in \tau_{i_k}} \omega_i^k \frac{b^{(i_k)} - A^{(i_k)} x_k}{\|A^{(i_k)}\|_2^2} (A^{(i_k)})^* \right)$$

- [4] Needell and Tropp, Linear Algebra Appl.(2014).
- [5] I. Necoara, SIAM J. Matrix Anal. Appl.(2019).

Two-subspace Randomized Kaczmarz ^[6]

At the k-th iterate, randomly choose two different rows and update

$$x_k \longrightarrow x_{k+1} \in \{ x \, | \, A_{\tau_{i_k}} x = b_{\tau_{i_k}} \},$$

where

RK

$$A_{\tau_{i_k}} = \begin{pmatrix} A^{(i_{k_1})} \\ A^{(i_{k_2})} \end{pmatrix} \quad \text{and} \quad b_{\tau_{i_k}} = \begin{pmatrix} b^{(i_{k_1})} \\ b^{(i_{k_2})} \end{pmatrix}.$$

[6] Needell and Ward, J. Fourier Anal. Appl.(2013).

W.-T. Wu (Beijing Institute of Technology) Two-subspace Randomized Extended Kaczmarz Method

RK

Generalized Two-subspace Randomized Kaczmarz Method

1. Select
$$i_{k_1} \in \{1, 2, ..., m\}$$
 with probability
 $\Pr(\operatorname{row} = i_{k_1}) = \frac{\|A^{(i_{k_1})}\|_2^2}{\|A\|_F^2}$
2. Select $i_{k_2} \in \{1, 2, ..., m\} \setminus \{i_{k_1}\}$ with probability
 $\Pr(\operatorname{row} = i_{k_2}) = \frac{\|A^{(i_{k_2})}\|_2^2}{\|A\|_F^2 - \|A^{(i_{k_1})}\|_2^2}$
3. Set
 $\mu_k = \frac{A^{(i_{k_2})}(A^{(i_{k_1})})^*}{\|A^{(i_{k_1})}\|_2}$, $\tilde{r}_{k_1} = \frac{b^{(i_{k_1})} - A^{(i_{k_1})}x_k}{\|A^{(i_{k_1})}\|_2}$, $\tilde{r}_{k_2} = \frac{b^{(i_{k_2})} - A^{(i_{k_2})}x_k}{\|A^{(i_{k_2})}\|_2}$
4. Set
 $x_{k+1} = x_k + \frac{\tilde{r}_{k_1} - \bar{\mu}_k \tilde{r}_{k_2}}{(1 - |\mu_k|^2)\|A^{(i_{k_1})}\|_2} (A^{(i_{k_1})})^* + \frac{\tilde{r}_{k_2} - \mu_k \tilde{r}_{k_1}}{(1 - |\mu_k|^2)\|A^{(i_{k_2})}\|_2} (A^{(i_{k_2})})^*$

Generalized TRK Method (cont'd)

$$\begin{cases} x_{k+\frac{1}{2}} = x_k + \frac{\left(b^{(i_{k_2})} - A^{(i_{k_2})}x_k\right)}{\|A^{(i_{k_2})}\|_2^2} \left(A^{(i_{k_2})}\right)^* \\ x_{k+1} = x_{k+\frac{1}{2}} + \frac{\left(\beta_k - u_k^* x_{k+\frac{1}{2}}\right)}{\|u_k\|_2^2} u_k, \end{cases}$$

where

RK

$$\begin{split} \mu_k &= \frac{A^{(i_{k_2})}(A^{(i_{k_1})})^*}{\|A^{(i_{k_1})}\|_2 \|A^{(i_{k_1})}\|_2},\\ u_k &= \frac{(A^{(i_{k_1})})^*}{\|A^{(i_{k_1})}\|_2} - \mu_k \frac{(A^{(i_{k_2})})^*}{\|A^{(i_{k_2})}\|_2} \text{ and } \beta_k = \frac{b^{(i_{k_1})}}{\|A^{(i_{k_1})}\|_2} - \bar{\mu}_k \frac{b^{(i_{k_2})}}{\|A^{(i_{k_2})}\|_2}. \end{split}$$

W.-T. Wu (Beijing Institute of Technology) Two-subspace Randomized Extended Kaczmarz Method

TREK

RK:

GTRK:

Convergence Theorem ^[7]

If the linear system Ax = b is consistent, then the iteration sequence $\{x_k\}_{k=0}^{\infty}$ generated by the GTRK method starting from an initial guess $x_0 \in \mathbb{C}^n$ in the column space of A^* obeys

$$\begin{split} \mathbb{E} \|x_k - x_\star\|_2^2 \\ &\leq \left[\left(1 - \frac{\lambda_{\min}(A^*A)}{\tau_{\max}} \right) \left(1 - \frac{\lambda_{\min}(A^*A)}{\|A\|_F^2} \right) - \frac{\lambda_{\min}(A^*A)}{\|A\|_F^2} \frac{\tau_{\min}}{\tau_{\max}} \gamma \right]^k \|x_0 - x_\star\|_2^2 \\ \text{where } \gamma &= \min\left\{ \frac{\delta^2(1-\delta)}{1+\delta}, \frac{\Delta^2(1-\Delta)}{1+\Delta} \right\} \text{ with } \\ &\delta &= \min_{p \neq q} \frac{|A^{(p)}(A^{(q)})^*|}{\|A^{(p)}\|_2 \|A^{(q)}\|_2} \quad \text{and} \quad \Delta &= \max_{p \neq q} \frac{|A^{(p)}(A^{(q)})^*|}{\|A^{(p)}\|_2 \|A^{(q)}\|_2}, \end{split}$$

and

RK

$$\tau_{\min} = \|A\|_F^2 - \max_{1 \le i \le m} \|A^{(i)}\|_2^2, \quad \tau_{\max} = \|A\|_F^2 - \min_{1 \le i \le m} \|A^{(i)}\|_2^2.$$

[7] Wu, Numer. Algorithms(2022).

W.-T. Wu (Beijing Institute of Technology) Two-subspace Randomized Extended Kaczmarz Method

Outline

Randomized Kaczmarz

Two-subspace Randomized Extended Kaczmarz

3 Numerical Results

Conclusions and Remarks

Randomized Extended Kaczmarz Method ^[8]

1. Select
$$i_k \in \{1, 2, ..., m\}$$
 with the probability
 $\Pr(\text{row} = i_k) = \frac{\|A^{(i_k)}\|_2^2}{\|A\|_F^2}$
2. Set $x_{k+1} = x_k + \frac{\left(b^{(i_k)} - z_k^{(i_k)} - A^{(i_k)}x_k\right)}{\|A^{(i_k)}\|_2^2} (A^{(i_k)})^*$
3. Select $j_k \in \{1, 2, ..., n\}$ with the probability
 $\Pr(\text{column} = j_k) = \frac{\|A_{(j_k)}\|_2^2}{\|A\|_F^2}$
4. Set $z_{k+1} = z_k - \frac{(A_{(j_k)})^* z_k}{\|A_{(j_k)}\|_2^2} A_{(j_k)}$

where

- $A_{(j_k)}$: the j_k -th column of the matrix A,
- $z_k^{(i_k)}$: the i_k -th entry of the vector z_k ,
- $k = 0, 1, 2, \ldots$

[8] Zouzias and Freris, SIMAX(2013).

Convergence Theorem

Starting from the initial vectors $x_0 = 0$ and $z_0 = b$, the iteration sequence $\{x_k\}_{k=0}^{\infty}$ generated by the REK method obeys

$$\mathbb{E} \|x_k - x_\star\|_2^2 \le \left(1 - \frac{\lambda_{\min}(A^*A)}{\|A\|_F^2}\right)^{\lfloor \frac{k}{2} \rfloor} \left(1 + 2\kappa^2(A)\right) \|x_\star\|_2^2,$$

where

RK

- $\kappa(A) = \sqrt{\frac{\lambda_{\max}(A^*A)}{\lambda_{\min}(A^*A)}}$,
- $\lambda_{\min}(A^*A)$ and $\lambda_{\max}(A^*A)$ represent the smallest nonzero and the largest eigenvalue of the matrix A^*A , respectively,
- $\lfloor \cdot \rfloor$ represents the largest integer which is smaller than or equal to the corresponding constant.

[8] Zouzias and Freris, SIMAX(2013).

Select two distinct rows $A^{(i_{k_1})}$ and $A^{(i_{k_2})}$ randomly,

$$\begin{cases} x_{k+\frac{1}{2}} = x_k + \frac{\left(b^{(i_{k_2})} - z_k^{(i_{k_2})} - A^{(i_{k_2})} x_k\right)}{\|A^{(i_{k_2})}\|_2^2} \left(A^{(i_{k_2})}\right)^* \\ x_{k+1} = x_{k+\frac{1}{2}} + \frac{\left(\beta_k - u_k^* x_{k+\frac{1}{2}}\right)}{\|u_k\|_2^2} u_k, \end{cases}$$

where
$$\mu_k = \frac{A^{(i_{k_2})}(A^{(i_{k_1})})^*}{\|A^{(i_{k_2})}\|_2 \|A^{(i_{k_1})}\|_2}$$
,
 $u_k = \frac{(A^{(i_{k_1})})^*}{\|A^{(i_{k_1})}\|_2} - \mu_k \frac{(A^{(i_{k_2})})^*}{\|A^{(i_{k_2})}\|_2}$ and $\beta_k = \frac{b^{(i_{k_1})} - z_k^{(i_{k_1})}}{\|A^{(i_{k_1})}\|_2} - \bar{\mu}_k \frac{(b^{(i_{k_2})} - z_k^{(i_{k_2})})}{\|A^{(i_{k_2})}\|_2}$.

Then $x_{k+1} \in \{x \, | \, A_{\tau_{i_k}}x = b_{\tau_{i_k}} - (z_k)_{\tau_{i_k}}\}$, where

$$A_{\tau_{i_k}} = \left(\begin{array}{c} A^{(i_{k_1})} \\ A^{(i_{k_2})} \end{array}\right), \quad b_{\tau_{i_k}} = \left(\begin{array}{c} b^{(i_{k_1})} \\ b^{(i_{k_2})} \end{array}\right), \quad \text{and} \quad (z_k)_{\tau_{i_k}} = \left(\begin{array}{c} z_k^{(i_{k_1})} \\ z_k^{(i_{k_2})} \end{array}\right).$$

W.-T. Wu (Beijing Institute of Technology) Two-subspace Randomized Extended Kaczmarz Method

Select two distinct columns $A_{(j_{k_1})}$ and $A_{(j_{k_2})}$ randomly,

$$\begin{cases} z_{k+\frac{1}{2}} = z_k - \frac{A^*_{(j_{k_2})} z_k}{\|A_{(j_{k_2})}\|_2^2} A_{(j_{k_2})} \\ \\ z_{k+1} = z_{k+\frac{1}{2}} - \frac{v^*_k z_{k+\frac{1}{2}}}{\|v_k\|_2^2} v_k, \end{cases}$$

where

$$\nu_k = \frac{A^*_{(j_{k_2})}A_{(j_{k_1})}}{\|A_{(j_{k_2})}\|_2 \|A_{(j_{k_1})}\|_2} \quad \text{and} \quad v_k = \frac{A_{(j_{k_1})}}{\|A_{(j_{k_1})}\|_2} - \nu_k \frac{A_{(j_{k_2})}}{\|A_{(j_{k_2})}\|_2}.$$

Then $z_{k+1} \in \{z \mid A^*_{\omega_{i_k}} z = 0\}$, where $A_{\omega_{i_k}} = (A_{(j_{k_1})}, A_{(j_{k_2})})$.

W.-T. Wu (Beijing Institute of Technology) Two-subspace Randomized Extended Kaczmarz Method

RK

Two-subspace Randomized Extended Kaczmarz Method ^[7]

1. Select
$$i_{k_1} \in \{1, 2, ..., m\}$$
 with probability
 $\Pr(\operatorname{row} = i_{k_1}) = \frac{\|A^{(i_{k_1})}\|_2^2}{\|A\|_F^2}$
2. Select $i_{k_2} \in \{1, 2, ..., m\} \setminus \{i_{k_1}\}$ with probability
 $\Pr(\operatorname{row} = i_{k_2}) = \frac{\|A^{(i_{k_2})}\|_2^2}{\|A\|_F^2 - \|A^{(i_{k_1})}\|_2^2}$
3. Set
 $\mu_k = \frac{A^{(i_{k_2})}(A^{(i_{k_1})})^*}{\|A^{(i_{k_1})}\|_2 - A^{(i_{k_1})}x_k}$, $r_{k_2} = \frac{b^{(i_{k_2})} - z_k^{(i_{k_2})} - A^{(i_{k_2})}x_k}{\|A^{(i_{k_2})}\|_2}$
4. Set
 $x_{k+1} = x_k + \frac{r_{k_1} - \overline{\mu_k r_{k_2}}}{(1 - |\mu_k|^2)||A^{(i_{k_1})}||_2} (A^{(i_{k_1})})^* + \frac{r_{k_2} - \mu_k r_{k_1}}{(1 - |\mu_k|^2)||A^{(i_{k_2})}||_2} (A^{(i_{k_2})})^*$

RK

Two-subspace Randomized Extended Kaczmarz Method ^[7] (Cont'd.)

5. Select
$$j_{k_1} \in \{1, 2, ..., n\}$$
 with probability
 $\Pr(\text{column} = j_{k_1}) = \frac{\|A_{(j_{k_1})}\|_2^2}{\|A\|_F^2}$
6. Select $j_{k_2} \in \{1, 2, ..., n\} \setminus \{j_{k_1}\}$ with probability
 $\Pr(\text{column} = j_{k_2}) = \frac{\|A_{(j_{k_2})}\|_2^2}{\|A\|_F^2 - \|A_{(j_{k_1})}\|_2^2}$
7. Set
 $\nu_k = \frac{A_{(j_{k_2})}^*A_{(j_{k_1})}}{\|A_{(j_{k_2})}\|_2 \|A_{(j_{k_1})}\|_2}$, $s_{k_1} = \frac{A_{(j_{k_1})}^*z_k}{\|A_{(j_{k_1})}\|_2}$, $s_{k_2} = \frac{A_{(j_{k_2})}^*z_k}{\|A_{(j_{k_2})}\|_2}$
8. Set
 $z_{k+1} = z_k - \frac{s_{k_1} - \bar{\nu}_k s_{k_2}}{(1 - |\nu_k|^2) \|A_{(j_{k_1})}\|_2} A_{(j_{k_1})} - \frac{s_{k_2} - \nu_k s_{k_1}}{(1 - |\nu_k|^2) \|A_{(j_{k_2})}\|_2} A_{(j_{k_2})}$

[7] Wu, Numer. Algorithms(2022).

Convergence Theorem ^[7]

Starting from the initial vectors $x_0 = 0$ and $z_0 = b$, the iteration sequence $\{x_k\}_{k=0}^{\infty}$ generated by the TREK method obeys

$$\mathbb{E}\|x_k - x_\star\|_2^2 \leq (\max\{\alpha, \beta\})^{\lfloor \frac{k}{2} \rfloor} \left(1 + \frac{4}{(1-\Delta)(1-\alpha)} \frac{\tau_{\max}}{\tau_{\min}} \frac{\lambda_{\max}(A^*A)}{\|A\|_F^2}\right) \|x_\star\|_2^2,$$

where

RK

$$\alpha = \left(1 - \frac{\lambda_{\min}(A^*A)}{\tau_{\max}}\right) \left(1 - \frac{\lambda_{\min}(A^*A)}{\|A\|_F^2}\right) - \frac{\lambda_{\min}(A^*A)}{\|A\|_F^2} \frac{\tau_{\min}}{\tau_{\max}} \gamma$$

and

$$\beta = \left(1 - \frac{\lambda_{\min}(A^*A)}{\tilde{\tau}_{\max}}\right) \left(1 - \frac{\lambda_{\min}(A^*A)}{\|A\|_F^2}\right) - \frac{\lambda_{\min}(A^*A)}{\|A\|_F^2} \frac{\tilde{\tau}_{\min}}{\tilde{\tau}_{\max}} \,\tilde{\gamma},$$

Convergence Theorem ^[7] (Cont'd.)

with
$$\gamma = \min\left\{\frac{\delta^2(1-\delta)}{1+\delta}, \frac{\Delta^2(1-\Delta)}{1+\Delta}\right\}$$
, $\tilde{\gamma} = \min\left\{\frac{\tilde{\delta}^2(1-\tilde{\delta})}{1+\tilde{\delta}}, \frac{\tilde{\Delta}^2(1-\tilde{\Delta})}{1+\tilde{\Delta}}\right\}$,
 $\delta = \min_{p \neq q} \frac{|A^{(p)}(A^{(q)})^*|}{\|A^{(p)}\|_2 \|A^{(q)}\|_2}$ and $\Delta = \max_{p \neq q} \frac{|A^{(p)}(A^{(q)})^*|}{\|A^{(p)}\|_2 \|A^{(q)}\|_2}$,

$$\tilde{\delta} = \min_{p \neq q} \frac{|(A_{(p)})^* A_{(q)}|}{\|A_{(p)}\|_2 \|A_{(q)}\|_2} \quad \text{and} \quad \tilde{\Delta} = \max_{p \neq q} \frac{|(A_{(p)})^* A_{(q)}|}{\|A_{(p)}\|_2 \|A_{(q)}\|_2},$$

and

RK

$$\begin{aligned} \tau_{\min} &= \|A\|_F^2 - \max_{1 \le i \le m} \|A^{(i)}\|_2^2, \quad \tau_{\max} = \|A\|_F^2 - \min_{1 \le i \le m} \|A^{(i)}\|_2^2, \\ \tilde{\tau}_{\min} &= \|A\|_F^2 - \max_{1 \le j \le n} \|A_{(j)}\|_2^2, \quad \tilde{\tau}_{\max} = \|A\|_F^2 - \min_{1 \le j \le n} \|A_{(j)}\|_2^2. \end{aligned}$$

[7] Wu, Numer. Algorithms(2022).

lf

$$||A^{(i)}||_2^2, \quad i = 1, 2, \dots, m,$$

and

$$||A_{(j)}||_2^2, \quad j = 1, 2, \dots, n,$$

are precomputed,

- \bullet each iteration step of the TREK method will cost 10m+10n+20 flops,
- every two iteration steps of the REK method will cost 8m + 8n + 4 flops.

Outline

Randomized Kaczmarz

Two-subspace Randomized Extended Kaczmarz

③ Numerical Results

Conclusions and Remarks

TREK

- The IT and CPU mean the medians of the required numbers of iteration steps and the elapsed computing times with respect to 30 times of repeated runs of the corresponding method.
- All computations of the TREK and REK2 (each iteration of which consists of two REK iterations) methods are started from $x_0 = 0$ and $z_0 = b$. We check for convergence every $4\min(m, n)$ iterations, and terminate the computation once

$$\frac{\|b - z_k - Ax_k\|_2}{\|A\|_F \|x_k\|_2} \le 10^{-5} \quad \text{and} \quad \frac{\|A^* z_k\|_2}{\|A\|_F^2 \|x_k\|_2} \le 10^{-5}.$$

- The IT and CPU mean the medians of the required numbers of iteration steps and the elapsed computing times with respect to 30 times of repeated runs of the corresponding method.
- All computations of the TREK and REK2 (each iteration of which consists of two REK iterations) methods are started from $x_0 = 0$ and $z_0 = b$. We check for convergence every $4\min(m, n)$ iterations, and terminate the computation once

$$\frac{\|b - z_k - Ax_k\|_2}{\|A\|_F \|x_k\|_2} \le 10^{-5} \quad \text{and} \quad \frac{\|A^* z_k\|_2}{\|A\|_F^2 \|x_k\|_2} \le 10^{-5}.$$

• For the RCD method, the computations are started from $x_0 = 0$, and we check for convergence every $4\min(m, n)$ iterations, and terminate the computation once

$$\frac{\|A^*(b - Ax_k)\|_2}{\|A^*b\|_2} \le \varepsilon,$$

where ε is chosen to ensure that the relative solution error of the RCD method, which is defined as

$$\mathsf{RSE} = \frac{\|x_{\rm IT} - x_\star\|_2^2}{\|x_\star\|_2^2}$$

with $x_{\rm IT}$ representing the average of the approximate solution vectors obtained from 30 times of repeated runs of the corresponding method, is of the same order of magnitude as those of the TREK and REK2 methods.

RK

TREK

Numerical Results

Example A

• The entries of $A \in \mathbb{R}^{m \times n}$ are the independent identically distributed uniform random variables in the interval (t, 1),

and the right-hand side vector is $b = Ax_* + r$, where one of the solutions $x_* \in \mathbb{R}^n$ is generated randomly with the MATLAB function randn, and $r \in \mathbb{R}^m$ is a nonzero vector in the null space of A^T generated by the MATLAB function null.

• To guarantee the existence of the nonzero vector r,

when m>n, the matrix $A\in \mathbb{R}^{m imes n}$ is generated by the MATLAB function rand;

while when $m \le n$, the first m-1 rows of A are generated by the MATLAB function rand and the m-th row of A is the average of the first and second rows of A.

RK

TREK

Numerical Results

Example A

• The entries of $A \in \mathbb{R}^{m \times n}$ are the independent identically distributed uniform random variables in the interval (t, 1),

and the right-hand side vector is $b = Ax_* + r$, where one of the solutions $x_* \in \mathbb{R}^n$ is generated randomly with the MATLAB function randn, and $r \in \mathbb{R}^m$ is a nonzero vector in the null space of A^T generated by the MATLAB function null.

• To guarantee the existence of the nonzero vector r,

when m > n, the matrix $A \in \mathbb{R}^{m \times n}$ is generated by the MATLAB function rand;

while when $m \le n$, the first m-1 rows of A are generated by the MATLAB function rand and the m-th row of A is the average of the first and second rows of A.

Table 1: IT, CPU and RSE of REK2, RCD and TREK for m-by-n matrices A with $t=0.1,\ n=500$ and different m

m		1000	2000	3000	4000	5000
cond(A)		158.90	93.50	79.94	72.33	69.07
REK2	IT	188n	76n	60n	56n	48n
	CPU	4.3242	2.2912	2.5201	4.2182	4.8668
	RSE	1.31E-6	3.59E-7	1.12E-7	7.33E-8	1.19E-7
	IT	298n	128n	108n	100n	88n
RCD	CPU	1.4321	0.7174	0.7204	1.0438	1.5972
	RSE	2.86E-7	4.62E-8	9.17E-9	4.20E-9	3.99E-9
TREK	IT	68n	28n	24n	24n	20n
	CPU	1.6713	0.9547	0.9987	1.9746	2.3735
	RSE	4.06E-7	6.54E-8	1.06E-8	4.47E-9	4.68E-9

Table 2: IT, CPU and RSE of REK2 and TREK for $m\mbox{-by-}n$ matrices A with t=0.1, m=500 and different n

n		1000	2000	3000	4000	5000
cond(A)		Inf	Inf	Inf	Inf	Inf
REK2	IT	176m	76m	60m	56m	48m
	CPU	4.1023	2.4464	2.5774	5.2528	7.5367
	RSE	1.31E-6	3.91E-7	1.10E-7	5.56E-8	1.48E-7
	IT	64m	28m	24m	24m	20m
TREK	CPU	1.5701	0.9649	1.0963	2.4099	3.0217
	RSE	3.33E-7	7.04E-8	7.90E-9	1.97E-9	5.07E-9

Table 3: IT, CPU and RSE of REK2, RCD and TREK for m-by-n matrices A with $t=0.5,\ n=500$ and different m

m		1000	2000	3000	4000	5000
cond(A)		399.92	232.19	196.51	177.47	169.00
	IT	788n	326n	280n	224n	204n
REK2	CPU	18.2133	10.3647	11.6310	20.5536	24.7022
	RSE	1.54E-5	4.48E-6	7.81E-7	1.48E-6	1.18E-6
RCD	IT	1126n	536n	486n	360n	332n
	CPU	5.4303	3.0037	3.2598	3.8013	5.6518
	RSE	6.59E-6	8.37E-7	6.35E-8	3.80E-7	3.01E-7
TREK	IT	64n	28n	24n	20n	20n
	CPU	1.5650	0.9497	1.0814	1.9496	2.8463
	RSE	3.08E-6	2.12E-7	4.28E-8	5.82E-8	1.74E-8

Table 4: IT, CPU and RSE of REK2 and TREK for m-by-n matrices A with t=0.5, m=500 and different n

n		1000	2000	3000	4000	5000
cond(A)		Inf	Inf	Inf	Inf	Inf
REK2	IT	774m	316m	248m	224m	204m
	CPU	17.7455	9.6906	10.1737	19.3899	26.7698
	RSE	4.31E-6	3.72E-6	1.89E-6	2.16E-6	1.53E-6
	IT	64m	28m	24m	20m	20m
TREK	CPU	1.5365	0.9685	1.0407	1.9327	2.7177
	RSE	1.07E-6	1.90E-7	2.09E-8	7.60E-8	2.31E-8

Table 5: IT, CPU and RSE of REK2, RCD and TREK for m-by-n matrices A with $t=0.9,\ n=500$ and different m

m		1000	2000	3000	4000	5000
cond(A)		2430.90	1464.02	1234.32	1137.74	1073.23
REK2	IT	17998n	8402n	6692n	6118n	5218n
	CPU	416.9974	267.0242	273.7145	580.2049	716.2883
	RSE	4.92E-4	2.49E-4	1.68E-4	8.71E-5	1.27E-4
	IT	24814n	13954n	13760n	11670n	10166n
RCD	CPU	126.4919	76.0501	93.4548	165.0929	183.0102
	RSE	1.98E-4	3.84E-5	3.46E-6	3.73E-6	4.22E-6
TREK	IT	44n	20n	20n	16n	16n
	CPU	1.0858	0.6852	0.9021	1.6027	2.3717
	RSE	8.76E-5	1.49E-5	2.78E-6	2.13E-6	1.01E-6

Table 6: IT, CPU and RSE of REK2 and TREK for $m\mbox{-by-}n$ matrices A with t=0.9, m=500 and different n

n		1000	2000	3000	4000	5000
cond(A)		Inf	Inf	Inf	Inf	Inf
REK2	IT	15134m	8762m	6780m	6006m	5264m
	CPU	345.6047	273.5227	284.3943	442.4303	598.3631
	RSE	6.26E-4	4.77E-5	1.44E-4	1.14E-4	1.27E-4
TREK	IT	40m	24m	20m	16m	16m
	CPU	0.9911	0.8163	0.9159	1.2868	1.8594
	RSE	5.75E-5	1.80E-6	2.09E-6	2.43E-6	8.07E-7

Figure 1: Pictures of $\log_{10}(\text{IT})$ (left) and $\log_{10}(\text{CPU})$ (right) versus m for REK2 and TREK when n = 500. REK2 for t = 0.1: " $- \circ -$ ", REK2 for t = 0.5: " $- \triangleright -$ ", REK2 for t = 0.9: "- * -", TREK for t = 0.1: "-", TREK for t = 0.5: " $- \cdot -$ " and TREK for t = 0.9: " $\cdot \cdot \cdot$ ".

Figure 2: Pictures of $\log_{10}(\text{IT})$ (left) and $\log_{10}(\text{CPU})$ (right) versus n for REK2 and TREK when m = 500. REK2 for t = 0.1: " $- \circ -$ ", REK2 for t = 0.5: " $- \triangleright -$ ", REK2 for t = 0.9: "- * -", TREK for t = 0.1: "-", TREK for t = 0.5: " $- \cdot -$ " and TREK for t = 0.9: " $\cdot \cdot \cdot$ ".

Example B

\bullet We solve the X-ray CT problem generated by a MATLAB package AIR Tools II $^{[9]}.$

- The sparse coefficient matrix A is obtained from the discretization schemes of the line integrals along the straight X-rays of the attenuation coefficient of the object which the X-rays penetrate.
- The object domain is the square $[-30, 30] \times [-30, 30]$. The source is placed infinitely far from a flat detector with equal spacing between the 90 pixels and each detector pixel being hit by a single X-ray. These rays are parallel and the distance between the first and the last ray is 89. Moreover, the source-detector pair is rotated around the object, and measurements are recorded for angles 0:0.5:179.5.

[9] P.C. Hansen and J.S. Jørgensen, Numer. Algorithms(2018).

Example B

- \bullet We solve the X-ray CT problem generated by a MATLAB package AIR Tools II $^{[9]}.$
- The sparse coefficient matrix A is obtained from the discretization schemes of the line integrals along the straight X-rays of the attenuation coefficient of the object which the X-rays penetrate.
- The object domain is the square $[-30, 30] \times [-30, 30]$. The source is placed infinitely far from a flat detector with equal spacing between the 90 pixels and each detector pixel being hit by a single X-ray. These rays are parallel and the distance between the first and the last ray is 89. Moreover, the source-detector pair is rotated around the object, and measurements are recorded for angles 0:0.5:179.5.

[9] P.C. Hansen and J.S. Jørgensen, Numer. Algorithms(2018).

Example B

- \bullet We solve the X-ray CT problem generated by a MATLAB package AIR Tools II $^{[9]}.$
- The sparse coefficient matrix A is obtained from the discretization schemes of the line integrals along the straight X-rays of the attenuation coefficient of the object which the X-rays penetrate.
- The object domain is the square $[-30, 30] \times [-30, 30]$. The source is placed infinitely far from a flat detector with equal spacing between the 90 pixels and each detector pixel being hit by a single X-ray. These rays are parallel and the distance between the first and the last ray is 89. Moreover, the source-detector pair is rotated around the object, and measurements are recorded for angles 0:0.5:179.5.

[9] P.C. Hansen and J.S. Jørgensen, Numer. Algorithms(2018).

Example B (Cont'd.)

• The right-hand side vector is $b = Ax_{\star} + r$,

where the unique solution x_{\star} of the least-squares problem is obtained by reshaping the 60×60 image of the well-known Shepp-Logan medical phantom,

and r is a nonzero vector in the null space of A^T generated by the MATLAB function null.

RK

Table 7: IT, CPU and RSE of REK2, RCD and TREK for m-by-n matrix A with m=32400 and n=3600

method	IT	CPU	RSE
REK2	1930n	5465.8577	1.82E-4
RCD	4124n	1326.5625	3.78E-5
TREK	1694n	5279.6786	3.30E-5

(c) RCD

(d) TREK

Figure 3: Pictures of the exact Shepp-Logan medical phantom, and the approximate solutions obtained by REK2, RCD and TREK.

Outline

Randomized Kaczmarz

2 Two-subspace Randomized Extended Kaczmarz

3 Numerical Results

Conclusions and Remarks

- For solving large linear least-squares problems, we construct a block REK method, called the TREK method, each iteration of which utilizes two rows and two columns of the coefficient matrix.
- Theoretical analysis and numerical results show that the TREK method outperforms the REK method.
- For solving the least-squares problem with full column-rank coefficient matrix, the TREK method can also outperform the RCD method in some cases.

- For solving large linear least-squares problems, we construct a block REK method, called the TREK method, each iteration of which utilizes two rows and two columns of the coefficient matrix.
- Theoretical analysis and numerical results show that the TREK method outperforms the REK method.
- For solving the least-squares problem with full column-rank coefficient matrix, the TREK method can also outperform the RCD method in some cases.

- For solving large linear least-squares problems, we construct a block REK method, called the TREK method, each iteration of which utilizes two rows and two columns of the coefficient matrix.
- Theoretical analysis and numerical results show that the TREK method outperforms the REK method.
- For solving the least-squares problem with full column-rank coefficient matrix, the TREK method can also outperform the RCD method in some cases.

- When the angle between the two rows or the two columns used in each iteration is smaller, the TREK iteration will converge more faster than two REK iterations.
- However, each TREK iteration will cost 2m + 2n + 16 extra flops compared to two REK iterations. When the two rows used in each iteration are nearly orthogonal and the two columns used in each iteration are also nearly orthogonal, two REK iterations can already perform well.
- Therefore, we can consider to combine the TREK iteration and the REK iteration together and construct a more efficient hybrid method. This is an interesting and valuable topic to be studied in the future.

- When the angle between the two rows or the two columns used in each iteration is smaller, the TREK iteration will converge more faster than two REK iterations.
- However, each TREK iteration will cost 2m + 2n + 16 extra flops compared to two REK iterations. When the two rows used in each iteration are nearly orthogonal and the two columns used in each iteration are also nearly orthogonal, two REK iterations can already perform well.
- Therefore, we can consider to combine the TREK iteration and the REK iteration together and construct a more efficient hybrid method. This is an interesting and valuable topic to be studied in the future.

RK

- When the angle between the two rows or the two columns used in each iteration is smaller, the TREK iteration will converge more faster than two REK iterations.
- However, each TREK iteration will cost 2m + 2n + 16 extra flops compared to two REK iterations. When the two rows used in each iteration are nearly orthogonal and the two columns used in each iteration are also nearly orthogonal, two REK iterations can already perform well.
- Therefore, we can consider to combine the TREK iteration and the REK iteration together and construct a more efficient hybrid method. This is an interesting and valuable topic to be studied in the future.

Thank you for your attention!