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For the large-scale system of linear equations

Ax = b, with A ∈ Cm×n and b ∈ Cm,

consider its least-norm least-squares solution x? = A†b.

Ax = b =⇒


A(1)

A(2)

...
A(m)

x =


b(1)

b(2)

...
b(m)


where

A(i)(i = 1, 2, . . . ,m): the i-th row of the matrix A,

b(i)(i = 1, 2, . . . ,m): the i-th entry of the vector b.
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At the k-th iterate,

xk −→ xk+1 ∈ {x |A(ik)x = b(ik)}

that is

xk+1 = xk +

(
b(ik) −A(ik)xk

)
‖A(ik)‖22

(A(ik))∗, ik ∈ {1, 2, . . . ,m}

Kaczmarz Method
[1]

:
Select ik according to ik = (k mod m) + 1

Randomized Kaczmarz Method
[2]

:
Select ik with the probability Pr(row = ik) =

‖A(ik)‖22
‖A‖2F

[1] Kaczmarz, Bull. Int. Acad. Polon. Sci. Lett. A(1937).

[2] Strohmer and Vershynin, J. Fourier Anal. Appl.(2009).
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Convergence Theorem
[3]

Let the linear system Ax = b be consistent. Then, starting from an initial
guess x0 ∈ Cn in the column space of A∗, the iteration sequence {xk}∞k=0

generated by the RK method obeys

E‖xk − x?‖22 ≤
(

1− λmin(A∗A)

‖A‖2F

)k
‖x0 − x?‖22,

where λmin(A∗A) represents the smallest nonzero eigenvalue of A∗A.

[3] Gower and Richtárik, arXiv:1512.06890(2015).
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Block Kaczmarz methods

Ax = b =⇒


Aτ1
Aτ2

...
Aτp

x =


bτ1
bτ2
...
bτp



where

τi(i = 1, 2, . . . , p): a subset of {1, 2, . . . ,m},
Aτi(i = 1, 2, . . . , p): the row submatrix of A indexed by τi,

bτi(i = 1, 2, . . . , p): the subvector of b with components listed in τi.
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Block Kaczmarz methods (cont’d)

At the k-th iterate, randomly choose a block Aτik to update xk.

Randomized Block Kaczmarz Method
[4]

:
xk −→ xk+1 ∈ {x |Aτikx = bτik },
that is xk+1 = xk + (Aτik )†(bτik −Aτikxk)

Randomized Average Block Kaczmarz Method
[5]

:

xk+1 = xk + αk

( ∑
i∈τik

ωki
b(ik)−A(ik)xk

‖A(ik)‖22
(A(ik))∗

)

[4] Needell and Tropp, Linear Algebra Appl.(2014).

[5] I. Necoara, SIAM J. Matrix Anal. Appl.(2019).
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Two-subspace Randomized Kaczmarz
[6]

At the k-th iterate, randomly choose two different rows and update

xk −→ xk+1 ∈ {x |Aτikx = bτik },

where

Aτik =

(
A(ik1

)

A(ik2
)

)
and bτik =

(
b(ik1

)

b(ik2
)

)
.

[6] Needell and Ward, J. Fourier Anal. Appl.(2013).
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Generalized Two-subspace Randomized Kaczmarz Method

1. Select ik1 ∈ {1, 2, . . . ,m} with probability

Pr(row = ik1) =
‖A(ik1

)‖22
‖A‖2F

2. Select ik2 ∈ {1, 2, . . . ,m} \ {ik1} with probability

Pr(row = ik2) =
‖A(ik2

)‖22
‖A‖2F−‖A

(ik1
)‖22

3. Set

µk = A
(ik2

)
(A

(ik1
)
)∗

‖A(ik2
)‖2‖A

(ik1
)‖2

, r̃k1 = b
(ik1

)−A(ik1
)
xk

‖A(ik1
)‖2

, r̃k2 = b
(ik2

)−A(ik2
)
xk

‖A(ik2
)‖2

4. Set
xk+1 = xk +

r̃k1
−µ̄k r̃k2

(1−|µk|2)‖A(ik1
)‖2

(A(ik1
))∗ +

r̃k2
−µk r̃k1

(1−|µk|2)‖A(ik2
)‖2

(A(ik2
))∗
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Generalized TRK Method (cont’d)


xk+ 1

2
= xk +

(
b
(ik2

)−A(ik2
)
xk

)
‖A(ik2

)‖22
(A(ik2

))∗

xk+1 = xk+ 1
2

+

(
βk−u∗

kxk+1
2

)
‖uk‖22

uk,

where

µk = A
(ik2

)
(A

(ik1
)
)∗

‖A(ik2
)‖2‖A

(ik1
)‖2

,

uk = (A
(ik1

)
)∗

‖A(ik1
)‖2
− µk (A

(ik2
)
)∗

‖A(ik2
)‖2

and βk = b
(ik1

)

‖A(ik1
)‖2
− µ̄k b

(ik2
)

‖A(ik2
)‖2

.
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RK:

GTRK:
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Convergence Theorem
[7]

If the linear system Ax = b is consistent, then the iteration sequence
{xk}∞k=0 generated by the GTRK method starting from an initial guess
x0 ∈ Cn in the column space of A∗ obeys

E‖xk − x?‖22

≤
[(

1− λmin(A∗A)

τmax

)(
1− λmin(A∗A)

‖A‖2F

)
− λmin(A∗A)

‖A‖2F
τmin

τmax
γ

]k
‖x0 − x?‖22.

where γ = min
{
δ2(1−δ)

1+δ , ∆2(1−∆)
1+∆

}
with

δ = min
p 6=q

|A(p)(A(q))∗|
‖A(p)‖2‖A(q)‖2

and ∆ = max
p 6=q

|A(p)(A(q))∗|
‖A(p)‖2‖A(q)‖2

,

and

τmin = ‖A‖2F − max
1≤i≤m

‖A(i)‖22, τmax = ‖A‖2F − min
1≤i≤m

‖A(i)‖22.

[7] Wu, Numer. Algorithms(2022).
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Randomized Extended Kaczmarz Method
[8]

1. Select ik ∈ {1, 2, . . . ,m} with the probability

Pr(row = ik) =
‖A(ik)‖22
‖A‖2F

2. Set xk+1 = xk +

(
b(ik)−z(ik)

k −A(ik)xk

)
‖A(ik)‖22

(A(ik))∗

3. Select jk ∈ {1, 2, . . . , n} with the probability

Pr(column = jk) =
‖A(jk)‖22
‖A‖2F

4. Set zk+1 = zk −
(A(jk))

∗zk

‖A(jk)‖22
A(jk)

where

A(jk): the jk-th column of the matrix A,

z
(ik)
k : the ik-th entry of the vector zk,

k = 0, 1, 2, . . ..

[8] Zouzias and Freris, SIMAX(2013).

W.-T. Wu (Beijing Institute of Technology) Two-subspace Randomized Extended Kaczmarz Method 16 / 44



RK TREK Numerical Results Conclusions and Remarks

Convergence Theorem
[8]

Starting from the initial vectors x0 = 0 and z0 = b, the iteration sequence
{xk}∞k=0 generated by the REK method obeys

E‖xk − x?‖22 ≤
(

1− λmin(A∗A)

‖A‖2F

)b k2 c (
1 + 2κ2(A)

)
‖x?‖22,

where

κ(A) =
√

λmax(A∗A)
λmin(A∗A) ,

λmin(A∗A) and λmax(A∗A) represent the smallest nonzero and the
largest eigenvalue of the matrix A∗A, respectively,

b·c represents the largest integer which is smaller than or equal to the
corresponding constant.

[8] Zouzias and Freris, SIMAX(2013).
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Select two distinct rows A(ik1
) and A(ik2

) randomly,


xk+ 1

2
= xk +

(
b
(ik2

)−z
(ik2

)

k −A(ik2
)
xk

)
‖A(ik2

)‖22
(A(ik2

))∗

xk+1 = xk+ 1
2

+

(
βk−u∗

kxk+1
2

)
‖uk‖22

uk,

where µk = A
(ik2

)
(A

(ik1
)
)∗

‖A(ik2
)‖2‖A

(ik1
)‖2

,

uk = (A
(ik1

)
)∗

‖A(ik1
)‖2
− µk (A

(ik2
)
)∗

‖A(ik2
)‖2

and βk =
b
(ik1

)−z
(ik1

)

k

‖A(ik1
)‖2

− µ̄k

(
b
(ik2

)−z
(ik2

)

k

)
‖A(ik2

)‖2
.

Then xk+1 ∈ {x |Aτikx = bτik − (zk)τik }, where

Aτik =

(
A(ik1

)

A(ik2
)

)
, bτik =

(
b(ik1

)

b(ik2
)

)
, and (zk)τik =

(
z

(ik1
)

k

z
(ik2

)

k

)
.
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Select two distinct columns A(jk1
) and A(jk2

) randomly,


zk+ 1

2
= zk −

A∗
(jk2

)zk

‖A(jk2
)‖22

A(jk2
)

zk+1 = zk+ 1
2
−

v∗kzk+1
2

‖vk‖22
vk,

where

νk =
A∗(jk2

)A(jk1
)

‖A(jk2
)‖2‖A(jk1

)‖2
and vk =

A(jk1
)

‖A(jk1
)‖2
− νk

A(jk2
)

‖A(jk2
)‖2

.

Then zk+1 ∈ {z |A∗ωik
z = 0}, where Aωik

= (A(jk1
), A(jk2

)).
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Two-subspace Randomized Extended Kaczmarz Method
[7]

1. Select ik1 ∈ {1, 2, . . . ,m} with probability

Pr(row = ik1) =
‖A(ik1

)‖22
‖A‖2F

2. Select ik2 ∈ {1, 2, . . . ,m} \ {ik1} with probability

Pr(row = ik2) =
‖A(ik2

)‖22
‖A‖2F−‖A

(ik1
)‖22

3. Set

µk = A
(ik2

)
(A

(ik1
)
)∗

‖A(ik2
)‖2‖A

(ik1
)‖2

,

rk1 =
b
(ik1

)−z
(ik1

)

k −A(ik1
)
xk

‖A(ik1
)‖2

, rk2 =
b
(ik2

)−z
(ik2

)

k −A(ik2
)
xk

‖A(ik2
)‖2

4. Set
xk+1 = xk +

rk1
−µ̄krk2

(1−|µk|2)‖A(ik1
)‖2

(A(ik1
))∗ +

rk2
−µkrk1

(1−|µk|2)‖A(ik2
)‖2

(A(ik2
))∗
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Two-subspace Randomized Extended Kaczmarz Method
[7]

(Cont’d.)

5. Select jk1 ∈ {1, 2, . . . , n} with probability

Pr(column = jk1) =
‖A(jk1

)‖22
‖A‖2F

6. Select jk2 ∈ {1, 2, . . . , n} \ {jk1} with probability

Pr(column = jk2) =
‖A(jk2

)‖22
‖A‖2F−‖A(jk1

)‖22

7. Set

νk =
A∗

(jk2
)A(jk1

)

‖A(jk2
)‖2‖A(jk1

)‖2
, sk1 =

A∗
(jk1

)zk

‖A(jk1
)‖2

, sk2 =
A∗

(jk2
)zk

‖A(jk2
)‖2

8. Set
zk+1 = zk −

sk1
−ν̄ksk2

(1−|νk|2)‖A(jk1
)‖2

A(jk1
) −

sk2
−νksk1

(1−|νk|2)‖A(jk2
)‖2

A(jk2
)

[7] Wu, Numer. Algorithms(2022).
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Convergence Theorem
[7]

Starting from the initial vectors x0 = 0 and z0 = b, the iteration sequence
{xk}∞k=0 generated by the TREK method obeys

E‖xk − x?‖22

≤ (max{α, β})b k2 c
(

1 +
4

(1−∆)(1− α)

τmax

τmin

λmax(A∗A)

‖A‖2F

)
‖x?‖22,

where

α =

(
1− λmin(A∗A)

τmax

)(
1− λmin(A∗A)

‖A‖2F

)
− λmin(A∗A)

‖A‖2F
τmin

τmax
γ

and

β =

(
1− λmin(A∗A)

τ̃max

)(
1− λmin(A∗A)

‖A‖2F

)
− λmin(A∗A)

‖A‖2F
τ̃min

τ̃max
γ̃,
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Convergence Theorem
[7]

(Cont’d.)

with γ = min
{
δ2(1−δ)

1+δ , ∆2(1−∆)
1+∆

}
, γ̃ = min

{
δ̃2(1−δ̃)

1+δ̃
, ∆̃2(1−∆̃)

1+∆̃

}
,

δ = min
p 6=q

|A(p)(A(q))∗|
‖A(p)‖2‖A(q)‖2

and ∆ = max
p 6=q

|A(p)(A(q))∗|
‖A(p)‖2‖A(q)‖2

,

δ̃ = min
p 6=q

|(A(p))
∗A(q)|

‖A(p)‖2‖A(q)‖2
and ∆̃ = max

p 6=q

|(A(p))
∗A(q)|

‖A(p)‖2‖A(q)‖2
,

and

τmin = ‖A‖2F − max
1≤i≤m

‖A(i)‖22, τmax = ‖A‖2F − min
1≤i≤m

‖A(i)‖22,

τ̃min = ‖A‖2F − max
1≤j≤n

‖A(j)‖22, τ̃max = ‖A‖2F − min
1≤j≤n

‖A(j)‖22.

[7] Wu, Numer. Algorithms(2022).
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If

‖A(i)‖22, i = 1, 2, . . . ,m,

and

‖A(j)‖22, j = 1, 2, . . . , n,

are precomputed,

each iteration step of the TREK method will cost 10m + 10n + 20
flops,

every two iteration steps of the REK method will cost 8m + 8n + 4
flops.
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The IT and CPU mean the medians of the required numbers of itera-
tion steps and the elapsed computing times with respect to 30 times
of repeated runs of the corresponding method.

All computations of the TREK and REK2 (each iteration of which
consists of two REK iterations) methods are started from x0 = 0 and
z0 = b. We check for convergence every 4 min(m,n) iterations, and
terminate the computation once

‖b− zk −Axk‖2
‖A‖F ‖xk‖2

≤ 10−5 and
‖A∗zk‖2
‖A‖2F ‖xk‖2

≤ 10−5.
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For the RCD method, the computations are started from x0 = 0, and
we check for convergence every 4 min(m,n) iterations, and terminate
the computation once

‖A∗(b−Axk)‖2
‖A∗b‖2

≤ ε,

where ε is chosen to ensure that the relative solution error of the
RCD method, which is defined as

RSE =
‖xIT − x?‖22
‖x?‖22

with xIT representing the average of the approximate solution vectors
obtained from 30 times of repeated runs of the corresponding method,
is of the same order of magnitude as those of the TREK and REK2
methods.
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Example A

The entries of A ∈ Rm×n are the independent identically distributed
uniform random variables in the interval (t, 1),

and the right-hand side vector is b = Ax∗ + r, where one of the so-
lutions x∗ ∈ Rn is generated randomly with the MATLAB function
randn, and r ∈ Rm is a nonzero vector in the null space of AT gener-
ated by the MATLAB function null.

To guarantee the existence of the nonzero vector r,

when m > n, the matrix A ∈ Rm×n is generated by the MATLAB
function rand;

while when m ≤ n, the first m − 1 rows of A are generated by the
MATLAB function rand and the m-th row of A is the average of the
first and second rows of A.
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Table 1: IT, CPU and RSE of REK2, RCD and TREK for m-by-n matrices A with
t = 0.1, n = 500 and different m

m 1000 2000 3000 4000 5000

cond(A) 158.90 93.50 79.94 72.33 69.07

REK2
IT 188n 76n 60n 56n 48n

CPU 4.3242 2.2912 2.5201 4.2182 4.8668
RSE 1.31E-6 3.59E-7 1.12E-7 7.33E-8 1.19E-7

RCD
IT 298n 128n 108n 100n 88n

CPU 1.4321 0.7174 0.7204 1.0438 1.5972
RSE 2.86E-7 4.62E-8 9.17E-9 4.20E-9 3.99E-9

TREK
IT 68n 28n 24n 24n 20n

CPU 1.6713 0.9547 0.9987 1.9746 2.3735
RSE 4.06E-7 6.54E-8 1.06E-8 4.47E-9 4.68E-9
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Table 2: IT, CPU and RSE of REK2 and TREK for m-by-n matrices A with t = 0.1,
m = 500 and different n

n 1000 2000 3000 4000 5000

cond(A) Inf Inf Inf Inf Inf

REK2
IT 176m 76m 60m 56m 48m

CPU 4.1023 2.4464 2.5774 5.2528 7.5367
RSE 1.31E-6 3.91E-7 1.10E-7 5.56E-8 1.48E-7

TREK
IT 64m 28m 24m 24m 20m

CPU 1.5701 0.9649 1.0963 2.4099 3.0217
RSE 3.33E-7 7.04E-8 7.90E-9 1.97E-9 5.07E-9
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Table 3: IT, CPU and RSE of REK2, RCD and TREK for m-by-n matrices A with
t = 0.5, n = 500 and different m

m 1000 2000 3000 4000 5000

cond(A) 399.92 232.19 196.51 177.47 169.00

REK2
IT 788n 326n 280n 224n 204n

CPU 18.2133 10.3647 11.6310 20.5536 24.7022
RSE 1.54E-5 4.48E-6 7.81E-7 1.48E-6 1.18E-6

RCD
IT 1126n 536n 486n 360n 332n

CPU 5.4303 3.0037 3.2598 3.8013 5.6518
RSE 6.59E-6 8.37E-7 6.35E-8 3.80E-7 3.01E-7

TREK
IT 64n 28n 24n 20n 20n

CPU 1.5650 0.9497 1.0814 1.9496 2.8463
RSE 3.08E-6 2.12E-7 4.28E-8 5.82E-8 1.74E-8
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Table 4: IT, CPU and RSE of REK2 and TREK for m-by-n matrices A with t = 0.5,
m = 500 and different n

n 1000 2000 3000 4000 5000

cond(A) Inf Inf Inf Inf Inf

REK2
IT 774m 316m 248m 224m 204m

CPU 17.7455 9.6906 10.1737 19.3899 26.7698
RSE 4.31E-6 3.72E-6 1.89E-6 2.16E-6 1.53E-6

TREK
IT 64m 28m 24m 20m 20m

CPU 1.5365 0.9685 1.0407 1.9327 2.7177
RSE 1.07E-6 1.90E-7 2.09E-8 7.60E-8 2.31E-8

W.-T. Wu (Beijing Institute of Technology) Two-subspace Randomized Extended Kaczmarz Method 32 / 44



RK TREK Numerical Results Conclusions and Remarks

Table 5: IT, CPU and RSE of REK2, RCD and TREK for m-by-n matrices A with
t = 0.9, n = 500 and different m

m 1000 2000 3000 4000 5000

cond(A) 2430.90 1464.02 1234.32 1137.74 1073.23

REK2
IT 17998n 8402n 6692n 6118n 5218n

CPU 416.9974 267.0242 273.7145 580.2049 716.2883
RSE 4.92E-4 2.49E-4 1.68E-4 8.71E-5 1.27E-4

RCD
IT 24814n 13954n 13760n 11670n 10166n

CPU 126.4919 76.0501 93.4548 165.0929 183.0102
RSE 1.98E-4 3.84E-5 3.46E-6 3.73E-6 4.22E-6

TREK
IT 44n 20n 20n 16n 16n

CPU 1.0858 0.6852 0.9021 1.6027 2.3717
RSE 8.76E-5 1.49E-5 2.78E-6 2.13E-6 1.01E-6
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Table 6: IT, CPU and RSE of REK2 and TREK for m-by-n matrices A with t = 0.9,
m = 500 and different n

n 1000 2000 3000 4000 5000

cond(A) Inf Inf Inf Inf Inf

REK2
IT 15134m 8762m 6780m 6006m 5264m

CPU 345.6047 273.5227 284.3943 442.4303 598.3631
RSE 6.26E-4 4.77E-5 1.44E-4 1.14E-4 1.27E-4

TREK
IT 40m 24m 20m 16m 16m

CPU 0.9911 0.8163 0.9159 1.2868 1.8594
RSE 5.75E-5 1.80E-6 2.09E-6 2.43E-6 8.07E-7
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Figure 1: Pictures of log10(IT) (left) and log10(CPU) (right) versus m for REK2 and
TREK when n = 500. REK2 for t = 0.1: “− ◦ −”, REK2 for t = 0.5: “− .−”, REK2
for t = 0.9: “− ∗ −”, TREK for t = 0.1: “—”, TREK for t = 0.5: “− · −” and TREK
for t = 0.9: “· · ·”.
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Figure 2: Pictures of log10(IT) (left) and log10(CPU) (right) versus n for REK2 and
TREK when m = 500. REK2 for t = 0.1: “−◦−”, REK2 for t = 0.5: “− .−”, REK2
for t = 0.9: “− ∗ −”, TREK for t = 0.1: “—”, TREK for t = 0.5: “− · −” and TREK
for t = 0.9: “· · ·”.

W.-T. Wu (Beijing Institute of Technology) Two-subspace Randomized Extended Kaczmarz Method 36 / 44



RK TREK Numerical Results Conclusions and Remarks

Example B

We solve the X-ray CT problem generated by a MATLAB package

AIR Tools II
[9]

.

The sparse coefficient matrix A is obtained from the discretization
schemes of the line integrals along the straight X-rays of the attenu-
ation coefficient of the object which the X-rays penetrate.

The object domain is the square [−30, 30] × [−30, 30]. The source is
placed infinitely far from a flat detector with equal spacing between
the 90 pixels and each detector pixel being hit by a single X-ray. These
rays are parallel and the distance between the first and the last ray is
89. Moreover, the source-detector pair is rotated around the object,
and measurements are recorded for angles 0 : 0.5 : 179.5.

[9] P.C. Hansen and J.S. Jørgensen, Numer. Algorithms(2018).
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Example B (Cont’d.)

The right-hand side vector is b = Ax? + r,

where the unique solution x? of the least-squares problem is obtained
by reshaping the 60×60 image of the well-known Shepp-Logan medical
phantom,

and r is a nonzero vector in the null space of AT generated by the
MATLAB function null.
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Table 7: IT, CPU and RSE of REK2, RCD and TREK for m-by-n matrix A with
m = 32400 and n = 3600

method IT CPU RSE
REK2 1930n 5465.8577 1.82E-4
RCD 4124n 1326.5625 3.78E-5

TREK 1694n 5279.6786 3.30E-5
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(a) exact phantom (b) REK2

(c) RCD (d) TREK

Figure 3: Pictures of the exact Shepp-Logan medical phantom, and the approximate
solutions obtained by REK2, RCD and TREK.
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For solving large linear least-squares problems, we construct a block
REK method, called the TREK method, each iteration of which uti-
lizes two rows and two columns of the coefficient matrix.

Theoretical analysis and numerical results show that the TREK method
outperforms the REK method.

For solving the least-squares problem with full column-rank coefficient
matrix, the TREK method can also outperform the RCD method in
some cases.
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When the angle between the two rows or the two columns used in
each iteration is smaller, the TREK iteration will converge more faster
than two REK iterations.

However, each TREK iteration will cost 2m + 2n + 16 extra flops
compared to two REK iterations. When the two rows used in each
iteration are nearly orthogonal and the two columns used in each
iteration are also nearly orthogonal, two REK iterations can already
perform well.

Therefore, we can consider to combine the TREK iteration and the
REK iteration together and construct a more efficient hybrid method.
This is an interesting and valuable topic to be studied in the future.
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Thank you for your attention!
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